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Abstract 

 
This paper evaluates the relative performances of three alternative bond 
price volatility approximations: Macaulay duration, convexity-
augmented Macaulay duration, and an alternative proposed by the 
authors. Unlike the first two methods, the third is exact rather than 
approximate in predicting changes in zero-coupon bond prices.  In 
addition, the alternative improves on the accuracy of the Macaulay 
formula and, for large interest rate changes, of the convexity-
augmented formula.  For small changes, the accuracy of our proposed 
and of convexity are similar. Finally, calculation of price changes is 
considerably more computationally efficient using our proposed 
formulation, providing it certain pedagogical advantages over 
convexity.  (JEL:  G12) 

 
Introduction 

 
In a recent paper (Shirvani and Wilbratte, 2002), we proposed an approximation formula for bond 

price volatility that represents an alternative to the well-known Macaulay (1938) formula. Like its 
Macaulay counterpart, this alternative relies only on the concept of bond duration (D). However, our 
formula provides more accurate approximations to the magnitude of coupon bond price changes in 
response to changes in interest rates. In addition, it resolves a deficiency in the Macaulay formula by 
providing a functional form which reflects the asymmetric effects of interest rate changes on bond prices.   

Our earlier paper also compared the performance of our formula with the convexity-augmented 
Macaulay formula. Using several numerical examples, we showed that while the convexity-augmented 
Macaulay formula yields better estimates of coupon bond price volatility than ours for selected rate 
changes, the gains in accuracy are generally not great enough to warrant the tedious task of calculating 
bond convexities. While the convexity approach involves extended calculations, our alternative can be 
computed in seconds using a hand-held calculator. Students thus derive value from this method because its 
computational efficiency renders it a tool for use in the classroom. In addition, our formulation provides 
exact results when applied to zero coupon bonds, whereas the convexity approach provides only an 
approximation. 

The purpose of this note is to advance our earlier discussion by demonstrating that, contrary to our 
previous perception, our proposed method yields results for coupon bonds which are in some cases roughly 
as accurate as the convexity-augmented formula and in many other cases substantially more accurate. 
Using numerical examples and graphic analysis to provide a more complete range of values than the 
numerical examples, this note shows that for large increases in interest rates, our formula actually 
outperforms the convexity-based Macaulay formula, and for moderate increases, the two are roughly equal 
in accuracy.  

The following section demonstrates the foregoing points by describing and evaluating the relative 
performance of the three alternative measures of bond price volatility. The final section concludes.    

         
Alternative Bond Price Volatility Approximation Formulas 

 
 The comparative performance of alternative formulas for approximating the extent of bond price 
volatility can best be assessed in terms of the relationship between the percentage change in the bond price 
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and the percentage change in the bond yield (defined as one plus the yield to maturity of the bond). 
Differentiating the standard bond price formula with respect to the bond yield, we derive the following 
expression for the percentage change in the bond price: 
(1)    dP/P = - (ΣtCFt/yt/ΣCFt/yt ) dy/y,   
where P = the bond price, CFt = the cash flow in period t, and y = the bond yield. Given that the expression 
in the parentheses on the right hand side is the bond duration, the above relationship is reduced to the well-
known Macaulay formula: 
(2)    dP/P = - D (dy/y),            
which is an exact relationship for infinitesimal changes in the bond yield. For finite changes in the bond 
yield, however, the value of D varies, rendering the above relationship only a rough approximation even if 
the underlying assumption of a horizontal yield curve holds. 
 The true relationship between finite changes in the coupon bond price and yield is depicted in Figure1, 
in which it is compared to the relationships derived from the three approximations discussed in this paper. 
For purposes of this comparison, we consider a 25-year bond with returns which are reflective of market 
conditions of early 2005, i.e., with a 5.25 percent coupon and a yield to maturity of 5 percent.   

The baseline values plotted in Figure 1 are those of the true relationship, depicted by the dashed line. 
To derive the true relationship, we simply compute the market value of the bond using the 5 percent yield 
to maturity as a discount rate and then repeat the computations using higher and lower interest rates. The 
approximations are as follows: “Macaulay,” the approximation described above; “Convexity,” the 
convexity-augmented approach, presented below as equation 5; and “SW” (Shirvani-Wilbratte), the 
approximation proposed in this paper, given by equation 6, below.   

As indicated by Figure 1, the true relationship is represented by a complex hyperbolic form, which is 
asymmetric, becoming steeper in the northwest quadrant and flatter in the southeast quadrant. In contrast, 
the Macaulay approximation is linear and symmetric. Consequently, the Macaulay approximation becomes 
increasingly inaccurate as the percentage change in the bond yield becomes larger in absolute value, and 
especially so for positive changes in the yield. 

Figure 1
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For purposes of illustrating the effects of finite changes in bond yields, we restate the Macaulay 

formula for bond price changes as follows: 
(3)     ∆P/P ≅ - D (∆y/y), 
where ∆ represents a finite change and ≅  indicates approximately equal. 

Because of the inaccuracies of the Macaulay formulation, it is common in advanced treatments to 
augment the right-hand-side of the above equation by a corrective term to gain accuracy. The accepted 
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correction to the Macaulay approximation is achieved by augmenting the Macaulay formula with the 
concept of convexity (C), defined as the second derivative of the bond price with respect to the bond yield.  
The equation for this approximation formula, based on the first two terms of the Taylor series expansion of 
the bond price equation, can be written as: 
(4)    ∆P/P ≅ - D (∆y/y) +  ½ C (∆y/y)2,       
where 
(5)    C = [Σt(t + 1)CFt/yt]/ ΣCFt/yt          
is the expression for bond convexity.  (Most investment textbooks use the modified versions of D and C by 
dividing the versions used in this paper by y and y2, respectively. However, we employ the unmodified 
versions as they relate ∆P/P to ∆y/y and thus facilitate the comparisons of the above approximation 
formulas with our own, as demonstrated below.) 

As Figure 1 indicates, the convexity-augmented Macaulay formula takes the form of a parabola 
passing through the origin. While this parabola improves on Macaulay estimates of bond price changes for 
limited variations in yields, it suffers from the shortcoming that for large increases in yields, it indicates 
positive changes in the bond price, a result obviously at odds with the inverse relationship between the two.  
Of greater empirical importance, the convexity approximation deteriorates as changes in market interest 
rates become significant, i. e., before the range where the slope of the parabola becomes positive. The 
variations in the accuracy of this approach are quantified later in this paper. 

The alternative we propose approximates the change in bond prices using the following hyperbolic 
expression: 
(6)    ∆P/P ≅ (1 + ∆y/y)-D – 1 
 

The derivation of the above expression is justified on the ground that any coupon bond has a “sister” 
zero-coupon bond with the same duration and price (Shirvani and Wilbratte, 2002). This result builds on 
the fact that duration is the center of gravity of a bond. The intuition of this fact can be appreciated with 
reference to an analogous application of the center of gravity concept in physics. To measure the 
gravitational pull between two massive and extended bodies, such as the earth and the moon, one must 
theoretically calculate the force of such a pull between any pair of particles belonging to these bodies, a 
next to impossible task. A simpler way to measure the pull is to use the fact that each of these massive 
bodies acts as though its entire mass is concentrated at its center of gravity, which for the earth and the 
moon, for example, will simply be at their centers. By thus treating each massively extended body as just a 
point of mass at its center of gravity, it becomes an easy task to calculate any gravitational pull for 
extended bodies. More generally, it can be shown that many properties of physical bodies, such as their 
stability and motion, can be more conveniently studied using the same center of gravity approach.   

In a similar vein, as we have shown in our earlier paper, any bond can be likened to a flagpole with its 
center of gravity located at its duration. More specifically, any bond behaves as though its entire stream of 
cash payments over time were concentrated at a single point, its center of gravity, which is represented by 
the bond’s duration. Thus, any coupon bond can be treated as a zero-coupon bond, with the maturity and 
hence duration of the zero-coupon bond being equal to the coupon bond’s duration. In addition, the present 
values of all the payments on the two bonds, the coupon bond and its equivalent zero-coupon bond, will be 
the same, meaning the two bonds will have the same current price. 

In short, the use of our center of gravity analogy will indicate that any coupon bond with duration D is 
equivalent to a zero-coupon bond with maturity D and with the same price. Under these conditions, for 
small changes in bond yields, where the size of the duration is not significantly impacted, the percentage 
change in the price of a coupon bond is roughly equal to the percentage change in the price of its sister 
zero-coupon bond, that is: 

∆P/P ≅ [M/(y + ∆y)D - M/yD] / [M/yD] 
(7) 

=  [1 + (∆y/y)]-D –1 
where M = the par value of the zero-coupon bond. Note that if the above equation is approximated by the 
first two terms of its Taylor expansion, we obtain the Macaulay formula as an approximation to our model. 
In addition, the third term of the Taylor expansion of our equation provides a rough approximation for the 
convexity of a coupon bond with duration D as equal to D(D + 1), which is the convexity of the sister zero-
coupon bond with maturity D. 
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Students can be motivated to appreciate the importance of equation 6, as opposed to its more 
commonly used Macaulay rival, by first computing the percentage changes in the price of a given bond for 
equal but opposite and finite changes in yields. These calculations should clearly show that the bond price 
changes are not symmetric, rising more in response to decreases in yields than falling when yields increase. 
Next, using the Macaulay equation to approximate the same price changes, students are shown that the 
Macaulay approach will produce results which are, incorrectly, symmetric as well as rather inaccurate, 
especially for large yield changes. Finally, the use of equation 6, which relies only on the already computed 
duration value, will be shown to produce both asymmetric and better estimates of the actual price changes. 
For many undergraduate students, this will very much end the discussion. For graduate students, however, a 
discussion of the convexity concept may well be in order (see, for example, Reilly and Brown, 2003). Even 
here, students may be shown that the additional gains in accuracy obtained by the introduction of convexity 
may not justify the tedious extra calculations required.   

As a further pedagogical motivation, students should be reminded that many investors hold bonds for 
the safety they provide, and thus astute investors will be interested in the degree of risk of capital loss 
which characterizes their bond investments. Equation 6 provides a measure of such risk by indicating the 
extent to which various bonds’ prices change for a given change in bond yields. In addition, students can be 
shown that active bond traders can use equation 6 to determine the percentage gains or losses they will 
realize if bond yields fall or rise. Indeed, given the numerical value of a bond’s duration, D, students can 
use hand held calculators to perform exercises in class using equation 6, as the computations require only a 
few strokes and can be completed in a matter of seconds. 

Finally, returning to Figure 1, we see that the hyperbolic curve associated with our expression (SW) 
has the advantage that it continuously slopes downward, thus preserving the inverse relationship between 
the changes in coupon bond prices and their yields throughout the range of possible interest rates. In 
particular, for large interest rate changes, it provides a better approximation than the convexity-augmented 
Macaulay curve mentioned above. For smaller changes in interest rates, however, the convexity-augmented 
Macaulay curve performs slightly better. More generally, as Figure 1 demonstrates, in response to rising 
interest rates, the convexity formula initially outperforms (see “CONVEXITY”), then matches, and finally 
is outperformed by our formula (see “SW”). The interesting issues are, at what levels and to what extent do 
the alternatives outperform each other? 

 
Table 1 

Predicted Percentage Changes in Coupon Bond Prices 
Interest Rate 

Change 
(Basis Points) 

True Price 
Change 
(%∆) 

Macaulay 
Formula 

(%∆) 

Convexity- 
Augmented 

(%∆) 

Shirvani- 
Wilbratte 

(%∆) 
+500 -45.05 -69.78 

(-24.72) 
  -35.01 

    (+10.04) 
-49.42 

  (-4.37) 
+300 -31.76 -41.87 

(-10.11) 
      -29.35 
      (+2.41) 

-33.82 
  (-2.06) 

+100 -12.66 -13.96 
  (-1.29) 

      -12.56 
     (+0.10) 

-12.97 
 (-0.30) 

-100 +15.46    +13.96 
    (-1.50) 

    +15.35 
      (-0.11) 

+15.05 
   (-0.41) 

-300 +57.89   +41.87 
  (-16.02) 

    +54.38 
      (-3.51) 

+52.92 
  (-4.97) 

-500 +123.38   +69.78 
 (-53.60) 

  +104.54 
   (-18.84) 

 +104.40 
 (-18.98) 

  NOTE:  Approximation Errors in Parentheses 
 
To address these issues, we present a simple tabular example and compare the accuracy of the 

alternative formulations. Table 1 depicts the true percentage changes in the coupon bond price represented 
in Figure 1 for various changes in interest rates and compares them with the percentage changes indicated 
by the Macaulay model, the convexity-augmented Macaulay model, and ours (Shirvani-Wilbratte). As 
indicated in the table, the Macaulay model is increasingly inaccurate as compared with the alternatives for 
larger and larger positive changes in y. More specifically, the performances of the convexity model and our 
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alternative are roughly equal for interest rate increases up to 3 percentage points (300 basis points). For 
positive interest rate changes in excess of 3 percentage points, our model is significantly more accurate. For 
negative changes, corresponding to Figure 1, the models are roughly equal in accuracy throughout. 

 
Finally, turning from coupon to zero-coupon bonds, we demonstrate that our model is exact for the 

latter but that the Macaulay and convexity augmented formulations provide only approximations. The 
comparison appears in Table 2, using the same bond maturity as in Figure and Table 1, 25 years. As 
indicated in the second column, headed “True Price Change” and in the rightmost column, our approach 
provides the exact percentage change in the bond price. In contrast, the Macaulay formula becomes 
extremely inaccurate for 300 basis point increases, and the convexity-augmented formula improves on the 
Macaulay formula but becomes increasingly inaccurate for large interest rate changes, especially negative 
changes. 

 
Table 2 

Predicted Percentage Changes in Zero-Coupon Bond Prices 
Interest Rate 

Change 
(Basis Points) 

True Price 
Change 
(%∆) 

Macaulay 
Formula 

(%∆) 

Convexity- 
Augmented 

(%∆) 

Shirvani- 
Wilbratte 

(%∆) 
+500 -68.75 -119.05 

 (-50.30) 
    -45.35 
  (+23.40) 

  -68.75 
  (0) 

+300 -50.55 -71.43 
(-20.88) 

    -44.90 
   (+5.65) 

  -50.55 
   (0) 

+100 -21.10 -23.81 
  (-2.71) 

   -20.86 
   (+0.24) 

  -21.10 
   (0) 

-100 +27.03    +23.81 
 (-3.22) 

  +26.76 
   (-0.27) 

 +27.03 
   (0) 

-300  +106.41    +71.43 
   (-34.98) 

 +97.96 
   (-8.45) 

+106.41 
   (0) 

-500  +238.64  +119.05 
(-119.59) 

+192.74 
 (-45.90) 

+238.64 
   (0) 

NOTE:  Approximation Errors in Parentheses 
 

Conclusion 
 

This paper offers an expression for computing bond price volatility with advantages over the two 
accepted approaches. As compared with the Macaulay approach, ours is uniformly more accurate in 
estimating the extent of bond price changes with respect to changes in interest rates. Our approach is also 
more accurate than the convexity approach for large increases in interest rates but slightly less so for small 
changes. Furthermore, in the ranges in which the accuracy of our model and of the convexity approach is 
similar, the advantage of our model is simply its computational efficiency. This is useful for classroom 
demonstrations and can be applied by students even while taking examinations. In times when unusually 
low interest rates prevail or financial markets face a high degree of uncertainty due to events such as an 
increase in the size of the budget deficit or exchange rate volatility, it is arguable that the accompanying 
possibility of large interest rate changes enhances the value of our model as a measure of risk. Finally, 
unlike the Macaulay or the convexity approach, ours is exact for zero-coupon bonds.   
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